
International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014,pp.66-74

ISSN 2356-5608

Efficient Recursive Implementations for Linear

Algebra Operations
Ryma Mahfoudhi

1
, Samy Achour

2
, Zaher Mahjoub

3

University of Tunis El Manar, Faculty of Sciences of Tunis

University Campus - 2092 Manar II, Tunis, Tunisia
1
rimahayet@yahoo.fr

2
sami.achour@fst.rnu.tn

3
zaher.mahjoub@fst.rnu.tn

Abstract— ‘Divide and Conquer’ (D&C) is a famous paradigm

for designing efficient algorithms and improving the effectiveness

of computer memory hierarchies. Indeed, D&C-based matrix

algorithms operate on submatrices or blocks, so that data loaded

into the faster memory levels are reused. In this paper, we design

recursive D&C algorithms for solving four basic linear algebra

problems, namely matrix multiplication (MM), triangular matrix

system solving, LU factorization, dense matrix system solving. Our

solution is based on the use of matrix block decomposition and

Strassen MM algorithm in the top decomposition level and BLAS

routines invocation in the bottom decomposition level. The

theoretical complexity of our algorithms is O(������). In an

experimental part, we compared our implementations with the

equivalent kernels in the BLAS library. This latter study achieved

on different machines permits to evaluate the practical interest of

our contribution.

Keywords— BLAS, Block decomposition, Divide and

Conquer, Linear algebra, Recursive implementation, Strassen

algorithm.

I. INTRODUCTION

The optimization of linear algebra routines has an important

interest for both sequential and parallel applications. Indeed,

due to their cubic complexity, the linear algebra routines such

as matrix multiplication or system solving are too time

consuming for large sized matrices.

Since the performance of these routines is memory

hierarchy dependent, a solution for their optimization consists

in using the divide and conquer (D&C) paradigm. In fact, with

this technique, we divide the data into small portions which

are loaded and reused by fastest levels of memory

hierarchy.The Strassen method for matrix multiplication [1] is

a typical divide and conquer algorithm.

Recursion leads in fact to automatic matrix blocking for

dense linear algebra algorithms and the recursive way in

algorithm programming accelerates data access. For this and

other reasons, recursion usually speeds up the algorithms. Our

work deals with the development of fast algorithms for

solving triangular matrix systems, LU factorization and

solving dense matrix systems. The main idea focuses on how

recursion can be applied in order to benefit from recursive

Strassen matrix multiplication algorithm.

The remainder of our paper is organised as follows. In

Section 2, we recall the well-known Strassen algorithm for

matrix multiplication, introduce our recursive blocked

algorithms for solving a triangular matrix system then for LU

factorization and present two algorithms for solving a dense

matrix system. In Section 3, we discuss different

implementation issues, including when to terminate the

recursion (optimal level) and a describe comparative study

with the BLAS routines.

II. RECURSIVE LINEAR ALGBRA ALGORITHMS

A. Matrix Multiplication (MM)

Let A, B and C be real matrices of size n. The number of

scalar operations required for computing the matrix product

C=AB by the standard method is 2n
3
=O(n

3
). Due to its

regularity and stability, this method is implemented in the

BLAS library as dgemm routine.

In [1] Strassen introduced an algorithm for matrix

multiplication, based on the D&C paradigm, whose

complexity is only O(n�	
��). This algorithm is based on the

block decomposition of matrix A, B and C. Hence, to calculate

the matrix product C =AB of size n, we need 7 matrix

products and 18 matrix additions of size n/2. Therefore, the

complexity recurrence formula is as follows:

Str(n) = 7Str(n/2) + 18ADD(n/2) + O(n
2
). Solving this

recurrence leads to Str(n) = O(
�����
) = O(n

2.807
). Hence an

algorithm better than the standard one.

Since the seminal work of Strassen, a series of other works

tried to design faster algorithms. We may particularly cite the

Coppersmith-Winograd algorithm whose complexity is

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014,pp.66-74

ISSN 2356-5608

O(n
2,376

). However, this latter is significantly more

complicated and less stable than Strassen’s [2], [3].

B. Triangular Matrix System Solving (TMSS)

We now discuss the design of solvers for a triangular

matrix system with matrix right hand side AX=B (resp. left

hand side XA=B) where A (a triangular matrix) and B (a

dense matrix) are known.

This kernel is commonly named trsm in the BLAS

convention. In the following, we will consider, without loss of

generality, the resolution of a lower triangular matrix system

with matrix right hand side (AX=B). Our approach is based on

a block recursive algorithm in order to reduce the computation

to matrix multiplication (MM) [4], [5].

To optimize this algorithm, we use a fast algorithm for

dense MM i.e. Strassen algorithm.

Fig. 1 Matrix Splitting for TMSS Algorithm

We split A, X and B as mentioned in figure 1. This

recursive splitting is expressed as follows:

(1) A11X11 = B11 (3) A21X11 + A22X21= B21

(2) A11X12 = B12 (4) A21X12 + A22X22= B22

The procedure is recursively applied until reaching a size

smaller than a fixed block size blks. Hence, solving a TMSS

of size n requires 4 TMSS of size n/2 and 2 MM of size n/2.

Thus, the resulting complexity recurrence formula is:

TMSS(n) = 4TMSS(n/2) + 2MM(n/2) + O(n
2
)

 = 4TSS(n/2) + O(
�����) = O(
�����).

 So, we define for TMSS 2 levels (denoted (i,j), see figure

2) since there are 2 recursions.

Fig. 2 Matrix Splitting for TMSS Algorithm- 2 levels

TMSS Algorithm

Begin

 If (n<=blks) Then

 Trsm(A,X,B,n)

 Else /* split matrices into four blocks of sizes n/2*/

 X11 = TMSS(A11,B11)

 X12 = TMSS(A11,B12)

 X21 = TMSS(A22, B21-MM(A21,X11))

 X22 = TMSS(A22, B22-MM(A21,X12))

 Endif

End

C. LU Factorization (LUF)

LU Factorization, called also LU decomposition, factorizes

a matrix as the product of a lower triangular matrix (L) and an

upper triangular one (U). It is generally used to solve

square systems of linear equations, and is considered as a key

step for matrix inversion or computing the determinant

matrix. This kernel is commonly named getrf in the BLAS

convention.

To reduce the complexity of LUF, blocked algorithms

have been proposed since 1974 [6]. For a given matrix A of

size n, the L and U factors verifying A=LU. After splitting A,

L and U as presented in figure 3, we obtain the following

equations:

(1) L1U1= A11 (3) L3U1 = A21

(2) L1U2 = A12 (4) L3U2+ L4U4 = A22

Hence the LUF of matrix A of size n requires:

� One LUF of size n/2 i.e. (1): L1U1= A11

giving L1 and U1

� Solving 2 (lower) triangular matrix systems

(TSS) i.e. (2): L1U2=A12 giving U2 and (3)
T
:

U1
T
L3

T
=A21

T
 giving L3

� One matrix multiplication (MM) i.e. L3U2

� One LUF of size n/2 i.e. (4): L4U4 = A22 -

L3U2 giving L4 and U4.

Therefore, the complexity recurrence formula is as follows:

LUF(n) = 2LUF(n/2) + 2TMSS(n/2) + 1MM (n/2) + O(n
2
)

 = 2LUF(n/2) + O(
�����)= O(
�����)

 A X B

X
11
 X

12

X
21
 X

22

B
11
 B

12

B
21
 B

22

A
11

A
21

A
22

* =

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014,pp.66-74

ISSN 2356-5608

Fig. 3 Matrix Splitting for LUF Algorithm

LUF Algorithm

Begin

 If (n<=blks) Then

 getrf (A,L,U,n)

 Else /* split matrices into four blocks of sizes n/2*/

 (L1, [U1, U2]) = LUF ([A11 A12])
 t

U1
t
L3= A21

 H = A22 – L3U2

 (L4, U4) = LUF(H)

 Endif

End

D. Dense Matrix System Solving (DMSS)

1) Brief Survey: Solving a linear system of equations is a

basic kernel used in many scientific applications. Given its

cubic complexity in terms of the matrix size, say n, several

works addressed the design of practical efficient algorithms

for this problem. Apart the standard Gaussian elimination

(GE) algorithm, another algorithm namely LU factorization

(LUF) with same complexity is often used due to its better

stability. This algorithm is composed of two phases. The first

consists in factorizing of the input matrix, say A, into a

product of a lower triangular matrix L and an upper triangular

one U i.e. A=LU. Afterwards, if Ax=b is the input system,

where x and b are column vectors of size n and A is a square

matrix of size n, we have to successively solve, in the second

phase, two triangular systems i.e. Ly=b and Ux=y. We recall

that the first phase costs 2n
2
/3+O(n

2
) and the second costs

2n
2
+O(n). Thus an overall 2n

2
/3+O(n

2
) complexity [7].

Now, consider the matrix system (MS): AX=B where A, X

and B are three dense square matrices of size n, A and B being

known whereas X is unknown. Clearly, a straightforward

approach for solving such a matrix system (MS) consists in

solving n classical systems of size n. Obviously, this standard

algorithm (SA) has a complexity SA(n)=8n
3
/3+ O(n

2
) since

we need only one factorization followed by solving n couples

of triangular systems.

More precisely, solving the MS: AX=B by LUF requires

one LUF i.e. A=LU, then solving two triangular matrix

systems (TSS): LY=C and UX=Y i.e. 2 classical triangular

systems of size n. Our aim is to optimize (through the D&C

paradigm) both LUF and TSS kernels in order to obtain a fast

algorithm for solving the MS.

2) Recursive Algorithm Using Blocked Decomposition: We

introduce now another algorithm for solving the MS: AX=B.

The main idea consists in decomposing both matrices A, X

and B into 4 submatrices of size n/2 as shown in figure 4.

Fig. 4 Matrix Splitting for Recursive Blocked Algorithm

 This splitting leads to the following equations:

(1) X�� � A��X�� � B�� � X�� � A��
���B�� � A��X���

(2) A��X�� � A��X�� � B�� � X�� � A��
���B�� � A��X���

(3) A��X�� � A��X�� � B�� � A��A��
���B�� � A��X��� �

A��X�� � B��

(4) ������ � ������ � �� � ������
��� �� � ������� �

������ � ��

 To ensure that the complexity of the Recursive Blocked

(RB) algorithm does not exceed that of the standard algorithm

(SA) i.e. 8n
3
/3 +O(n

2
), we must choose the most suitable

kernels. We have shown in a previous paper [8] that we have

to solve two dense matrix systems and six triangular systems

of size n/2 along with five dense matrix multiplication of size

n/2. So we get the following complexity recurrence formula:

RB(n) = 2RB(n/2)+ 6TMSS(n/2)+5MM(n/2) + O(n
2
)

= 2RB(n/2) + O(
�����) = O(
�����)

 Clearly, if any MM algorithm of O(
�����) complexity is

used, then the algorithms previously presented both have the

same O(
�����) complexity instead of O(n
3
) for the

corresponding standard algorithms.

 To conclude our theoretical study on the four kernels, we

have to precise that their O�n�	
��� complexity requires that

the recursive decomposition procedure (RDC) is repeated until

reaching elementary problems of size O(1) [9], [10] However,

this is never the case it practice since the RDC is usually

stopped at a size equal to n/2
r
 where r < k = log2n leading to

the best execution time.

The parameter r will hence be considered as the optimal

level in the RDC. On the other hand, if we define 1 optimal

level for the MM algorithm, 2 optimal levels will be defined

for TMSS since there are 2 recursions (1 for TMSS and 1 for

MM called by TMSS), 4 for LUF since there are 4 recursions

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014,pp.66-74

ISSN 2356-5608

(1 for LUF, 1 for MM and 2 for TMSS both called by LUF), 6

for the DMSS algorithm based on LU factorization (noted

RDLUF) since there are 6 recursions (1 for RDLUF, 1 for

MM and 4 LUF both called by RDLUF), and 4 for RB

algorithm (1 for RB, 2 for TMSS and 1 for MM called by

RB).

III. EXPERIMENTAL STUDY

 This section presents experiments of our implementations

for the different algorithms described above. We precise that

we used BLAS library [11] in the last recursion level of any

algorithm. Four machines (nodes) from the Grid’5000 were

targeted [12] (see Table 1). We used the g++ compiler under a

Linux Debian wheezy distribution. All execution times are the

means of several runs.

 We have to underline the importance of the determination,

for each algorithm used, of the optimal number of recursive

levels (nrl) i.e. the one leading to the best execution time.

Indeed, the optimal nrl depends on both matrix size and target

machine architecture and has to be determined experimentally.

It is well known that the execution tie decreases for increasing

nrl until a precise threshold, and then increases [13].

 We discuss in this section the variations of the execution

time in terms of the matrix size N. For this purpose, N was

chosen in the range [1024 16384] and the input matrices

involving real floating point elements were randomly

generated. For sake of simplicity and without loss of

generality, we chosed N as a power of 2. We recall that when

this is not the case, there are techniques known in the literature

proposing efficient strategies (e.g. padding, dynamic peeling)

leading to the power-of-2 case without increasing the

complexity order [14].

TABLE I

MACHINES’ CHARACTERISTICS

 CPU RAM size
Cache

size

Node1 AMD Opteron@1.7GHz 47 GB 0.5 Mo

Node2 Intel Xeon@2.93GHz 23 GB 8 Mo

Node3 Intel Xeon@2.27GHz 23 GB 8 Mo

Node4 Intel Xeon@2.53GHz 15 GB 8 Mo

A. Matrix Multiplication

We compare in this section our recursive implementation

for matrix multiplication (RIMM) and the BLAS routine

dgemm for the same operation. We denote by Time and Level

the minimum execution time (given in seconds) of Strassen

Algorithm with the then level = ‘Level’. We also give the ratio

i.e. execution time of dgemm/execution time of RIMM.

TABLE III

 MM: RIMM VS DGEMM

 Node 1

N dgemm (s)
RIMM

Ratio
Time (s) Level

1024 2.75 1.51 2 1.82

2048 22.43 10.68 3 2.10

4096 178.93 76.64 4 2.33

8192 1449.63 545.02 5 2.66

16384 11553.63 3843.05 6 3.00

 Node 2

1024 0.96 0.71 3 1.35

2048 7.82 5.02 4 1.55

4096 67.4 35.8 5 1.88

8192 534.66 253.92 6 2.03

16384 4430.28 1788.54 7 2.47

 Node 3

1024 1.16 0.92 3 1.26

2048 9.62 6.45 4 1.49

4096 83.45 46.04 5 1.81

8192 664.81 326.27 6 2.03

16384 5548.39 2298.19 7 2.41

 Node 4

1024 0.93 0.74 3 1.25

2048 7.76 5.31 4 1.46

4096 68.67 38.03 5 1.80

8192 547.67 270.04 6 2.02

16384 4579.54 1904.74 7 2.40

We can notice that for any target machine and any matrix

size, RIMM is better than BLAS. The corresponding speed-

ups increase with N. Indeed, for N=16384, RIMM is 3 times

better than BLAS with node 1 and around 2.4 times better

with the three other nodes. We have to add that the recursion

is terminated when the size of remaining subproblems to be

solved is smaller than the machine block size, which is the

only architecture-dependent parameter in our algorithms.

B. Triangular Matrix System Solving

We compare in this section our recursive implementation

for triangular matrix system solving (RITSS) and the dtrsm

BLAS routine resolving the same problem. The two induced

recursion levels are denoted ‘Level(1,2)’ where the first is that

of RITSS and the second is that of RIMM (called by RITSS

for the resolution of the encountered MM).

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014,pp.66-74

ISSN 2356-5608

TABLE IIIII

TRIANGULAR MATRIX SYSTEM SOLVING: RITSS VS DTRSM

 Node 1

N Dtrsm(s)
RITSS

Ratio
Time (s) Level(1.2)

1024 1.22 0.91 (1,1) 1.34

2048 12.16 6.8 (2,2) 1.79

4096 104.06 50.56 (3,3) 2.06

8192 1202.44 373.71 (4,3) 3.21

16384 9672.9 2756.7 (4,4) 3.51

 Node 2

1024 0.59 0.47 (2,1) 1.25

2048 5.05 3.34 (4,1) 1.51

4096 41.59 24.27 (4,2) 1.71

8192 332.92 174.29 (4,3) 1.91

16384 2827.28 1252.79 (4,4) 2.26

 Node 3

1024 0.75 0.6 (2,1) 1.25

2048 6.4 4.3 (4,1) 1.49

4096 52.69 31.27 (4,2) 1.68

8192 420.77 224.51 (4,3) 1.87

16384 3591.94 1611.47 (5,4) 2.23

 Node 4

1024 0.59 0.49 (2,1) 1.20

2048 5.06 3.44 (4,1) 1.47

4096 42.25 25.07 (4,2) 1.68

8192 337.79 180.57 (4,3) 1.87

16384 2907.67 1298.52 (4,4) 2.24

We can determinate for any node the level for which RITSS

becomes better than dtrsm. The corresponding Ratio increases

with N. Indeed, for N=16384, RITSS is 3.5 times better than

BLAS with node 1 and around 2.25 times better with the other

machines.

C. LU Factorization

We compare in this section our recursive implementation

for the LU factorization routine RILUF and the BLAS routine

for LU factorization dgetrf. We denote the four induced

recursion levels by ‘Level(1,2,3,4)’ where level 1 is the LUF

recursion level, level 2 et 3 are those of RITSS (called by

RILUF) and level 4 is the recursion level of RIMM (called by

RILUF).

TABLE IVV

RILUF VS DGETRF

 Node 1

N dgetrf (s)
RILUF

Ratio
Time (s) Level(1,2,3,4)

1024 0.63 0.6 (2,0,4,3) 1.05

2048 4.98 4.16 (3,0,4,3) 1.20

4096 40.25 31.58 (3,0,4,3) 1.27

8192 421.41 249.68 (4,3,3,4) 1.69

16384 5631.42 2202.88 (3,3,3,3) 2.56

 Node 2

1024 0.3 0.28 (2,0,3,3) 1.07

2048 2.26 1.9 (4,0,3,3) 1.19

4096 19.06 14.23 (3,0,4,3) 1.34

8192 150.84 108.88 (3,0,4,4) 1.39

16384 1337.44 808.54 (4,1,4,4) 1.65

 Node 3

1024 0.37 0.32 (4,0,0,0) 1.16

2048 2.87 2.4 (4,0,0,1) 1.20

4096 24.14 18.19 (3,0,3,3) 1.33

8192 192.68 138.92 (3,0,4,4) 1.39

16384 1803.46 1038.77 (4,1,3,4) 1.74

 Node 4

1024 0.3 0.25 (4,0,1,0) 1.20

2048 2.27 1.9 (3,0,1,1) 1.19

4096 19.07 14.57 (3,0,4,3) 1.31

8192 152.55 111.3 (4,0,4,3) 1.37

16384 1338.21 844.33 (4,0,4,4) 1.58

We can determinate for any target machine the level for

which RILUF becomes better than dgetrf. The corresponding

ratio increases with N. Indeed, for N=16384, RILUF is 2.5

times faster than BLAS with node 1 and around 1.7 better with

the other machines. This shows the importance of determining

a suitable level.

D. Dense Matrix System Solving

We named our routine RIDLUF and RIDRB (see section 2.4).

The BLAS routine, where the routine dtrsm was used in

combination with the factorization routine dgetrf to solve

dense systems, is denoted dmss. We precise that we denote by

‘Ratio1’ (resp.Ratio2) the ratio execution time of

RIDLUF/dmss (resp. RIDRB/dmss). For RIDLUF, the six

induced recursion levels are denoted ‘Level(1…6)’, where

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014,pp.66-74

ISSN 2356-5608

levels 1…4 correspond to LUF (which is called by RIDLUF)

and levels 5,6 correspond to RITSS.

TABLE V

SOLVING DENSE MATRIX SYSTEM: RIDLUF VS DTRSM

 Node 1

N dmss (s)
RIDLUF

Ratio1
Time (s) Level(1…6)

1024 3.15 3.3 (2,0,2,2,3,3) 0.95

2048 29.44 19.9 (3,0,2,2,3,3) 1.48

4096 250 135.1 (3,1,3,3,3,3) 1.85

8192 3063.05 1029.05 (3,0,3,3,4,4) 2.98

16384 25546.01 7756.44 (4,1,3,4,4,4) 3.29

 Node 2

1024 1.45 1.47 (2,0,2,2,3,3) 0.99

2048 12.37 9.13 (2,0,2,2,3,3) 1.35

4096 102.48 63.55 (3,0,3,3,3,3) 1.61

8192 850.81 459.83 (3,1,4,3,4,3) 1.85

16384 7017.24 3348.38 (4,0,4,4,4,4) 2.10

 Node 3

1024 1.47 1.61 (3,0,2,2,3,3) 0.91

2048 12.5 9.77 (2,0,2,2,3,3) 1.28

4096 104.41 66.47 (3,0,3,3,3,3) 1.57

8192 849.34 482.97 (3,0,3,3,3,3) 1.76

16384 7310.57 3486.21 (3,1,3,3,4,4) 2.10

 Node 4

1024 1.88 1.88 (3,0,2,2,3,3) 1.00

2048 15.77 11.75 (3,0,2,2,3,3) 1.34

4096 130.65 81.74 (3,0,3,3,3,3) 1.60

8192 1073.95 600.72 (3,0,3,3,4,4) 1.79

16384 9009.67 4371.1 (3,1,3,3,4,4) 2.06

 We can determinate for any node the level for which

RIDLUF becomes better than dmss. The corresponding ratio

increases with N. Indeed, for N=16384, RIDLUF is 3.29

times better than BLAS with node 1 and around 2 times better

with the other nodes.

 For RIDRB, we denote the four induced recursion levels

by ‘Level (1…4)’, where level 1 is the recursion levels of

RIDRB, levels 2 and 3 the recursion levels of RITSS (which

is called by RIDRB) and level 4 is the recursion level of

RIMM.

We remark that for any target machine, there is a level

when RIDRB becomes faster than dmss. For a matrix of size

16384, RIDRB is 3.33 times better than BLAS with node 1

and around 2.2 times better with the other nodes. Furthermore,

an important loss of performance is observed for BLAS when

N increases.

TABLE VI

SOLVING DENSE MATRIX SYSTEM: RIDRB VS DMSS

 Node 1

N dmss (s)

RIDRB

Ratio2 Time (s) Level(1…

4)

1024 3.18 2.1 (1,2,1,1) 1.51

2048 29.57 16.09 (1,2,1,1) 1.84

4096 248.6 127.66 (2,2,2,2) 1.95

8192 3067.71 957.64 (2,3,3,3) 3.20

16384 25471.57 7653.75 (3,3,4,4) 3.33

 Node 2

1024 1.49 1.03 (1,2,1,1) 1.45

2048 12.42 7.46 (1,3,1,1) 1.66

4096 102.77 58.13 (1,3,2,2) 1.77

8192 850.77 430.7 (2,3,3,3) 1.98

16384 7150.95 3217.06 (2,4,4,4) 2.22

 Node 3

1024 1.48 1.06 (1,2,1,1) 1.40

2048 12.49 7.68 (1,2,1,1) 1.63

4096 104.52 59.55 (1,4,1,1) 1.76

8192 849.05 453.67 (2,2,3,3) 1.87

16384 7304.99 3278.79 (2,3,4,4) 2.23

 Node 4

1024 1.87 1.32 (1,2,1,1) 1.42

2048 15.76 9.60 (1,3,1,1) 1.64

4096 130.42 74.67 (1,4,2,2) 1.75

8192 1072.29 553.33 (1,3,3,3) 1.94

16384 9013.12 4894.0 (2,2,3,3) 2.19

E. Remarks related to machine architecture

The experimental study achieved on different nodes

enables us to make the following remarks as far as the node

architecture is concerned.

1) Different behaviors between nodes: Figure 5 and figure 6

depict the variations of the Ratio in terms of matrix size for

MM and TMSS. We can notice that the behaviours of the

three Intel nodes (2, 3 and 4) are quite similar contrary to node

1. In fact, the designed algorithms are more efficient on this

latter.

This phenomenon is due to the decreasing of BLAS

performance for node 1. In fact, the optimization approach

adopted by BLAS basically involves the optimal use of cache

by simultaneously operating on several columns of a matrix.

On machines with high speed and large cache memory, these

operations can provide a significant speed advantage [15].

Since for the AMD processor (node 1), the cache memory size

is 0.5 Mo, so the BLAS performance decreases and the ratio is

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014,pp.66-74

ISSN 2356-5608

larger than that found for other nodes .i.e. for Intel processors

having 8Mo of cache size (see figure 7).

Fig. 5 Ratiovariations in terms of matrix size n –

 RIMM vs DGEMM

Fig. 6 Ratio variations in terms of matrix size n –

RITSS vs DTRSM

Fig. 7 Performance variation in terms of matrix size n –

DGEMM

2) RIDLUF vs RIDRB: In Figure 8 the execution time ratio of

RIRB/ RILUF is depicted. We can notice that RIDRB is more

efficient than RIDLUF. For increasing matrix sizes, the two

algorithms become very similar (improvement factor

decreases from 1.57 for N=1024 to 1.01 for N=16384).

Fig. 8 Ratio variations in terms of matrix size n -

 RIDLUF vs RIDRB

IV. CONCLUSION AND FUTURE WORK

The fast recursive algorithms we designed for both matrix

multiplication, LU factorization, triangular and dense matrix

systems solving have been proven enough satisfactory in

practice and could outperform some BLAS routines. These

performances were tightly related to the target machines and

the optimal number of recursion levels. Indeed, this occurs at a

threshold reached when the remaining sub-problems to be

solved are smaller than the optimal memory block size of the

target machine. Pursuing recursion until a lower size would in

general leads to an important overhead and a drop in the

overall performance. It has to be noticed that our (recursive)

algorithms essentially benefit from both (recursive) Strassen

matrix multiplication algorithm, recursion and the use of

BLAS routines in the last recursion level. Furthermore, the

performance was reached, particularly thanks to (i) efficient

reduction to matrix multiplication where we optimized the

number of recursive decomposition levels and (ii) reusing

numerical computing libraries as much as possible.

The results we obtained lead us to precise some

attracting perspectives we intend to study in the future. We

may particularly cite the following points:

• Design of specific heuristics for the

determination of the multiple optimal recursion levels in the

different discussed implementations.

• Generalize our approach to other linear algebra

kernels such as rectangular matrix system solving and

multiplication.

REFERENCES

[1] V. Strassen, “Gaussian elimination is not optimal”, Numerische

Mathematik, 1969, 13, pp. 354-356.

[2] D. H. Bailey , K. Lee , H. D. Simon, “Using Strassen's Algorithm to

Accelerate the Solution of Linear Systems, ” 1991, J. Supercomputing,

1991,(4), pp.357-371.

[3] J. Demmel, O. Holtz and R. Kleinberg, “Fast linear algebra is stable,”

Numerische Mathematik., 2007, 108(1), pp. 59-91.

[4] R. Mahfoudhi, “A fast triangular matrix inversion,” Proceedings of the

2012 International Conference on Applied and Engineering

Mathematics, ICAEM 2012, London, 2012

0

1

2

3

4

1024 2048 4096 8192 16384

R
at

io

Size (N)

Node 1 Node 2 Node 3 Node 4

0

1

2

3

4

1024 2048 4096 8192 16384

R
at

io

Size (N)

Node 1 Node 2 Node 3 Node 4

0

0,5

1

1,5

2

2,5

1024 2048 4096 8192 16384

G
F

/s

Size (N)

Node 1 Node 2 Node 3 Node 4

0

0,2

0,4

0,6

0,8

1

1024 2048 4096 8192 16384

R
at

io

Size (N)

Node 1 Node 2 Node 3 Node 4

International Conference on Automation, Control, Engineering and Computer Science (ACECS'14)

Proceedings - Copyright IPCO-2014,pp.66-74

ISSN 2356-5608

[5] R. Mahfoudhi, and Z. Mahjoub, “A fast recursive blocked algorithm for

dense matrix inversion, ” Proceedings of the 12th International

Conference on Computational and Mathematical Methods in Science

and Engineering, CMMSE 2012, La Manga, Spain, 2012.

[6] A. V. Aho, J. E. Hopcroft, and J.D. Ullman,” The design and analysis

of computer algorithms,” Addison-Wesley, Reading, Mass, 1974.

[7] P. Lascaux and R. Théodor, “Analyse numérique matricielle appliquée

à l’art de l’ingénieur, Tome 1, ” Dunod, Paris, 2000.

[8] R. Mahfoudhi, and Z. Mahjoub, “On fast algorithms for matrix system

solving, ” Proc. International Conference on Control, Engineering &

Information Technology, CMMSE 2012, CEIT’13, Sousse, Tunisia,

2013.

[9] F. Song, Sh. Moore, and J. Dongarra, “Experiments with Strassen's

algorithm: from sequential to parallel, ” International Conference on

Parallel and Distributed Computing and Systems, PDCS06, Dallas,

Texas,2006.

[10] V. Valsalam, and A. Skjellum, “A framework for high-performance

matrix multiplication based on hierarchical abstractions, algorithms and

optimized low-level kernels,” Concurrency and Computation: Practice

and Experience, 14 (10), pp.805-839, 2002.

[11] (2013) The BLAS website. [Online]. Available: www.netlib.org/blas/

[12] (2013) The Grid 5000 website. [Online] Available :

https://www.grid5000.fr

[13] S. Huss-Lederman, E.M. Jacobson, J.R. Johnson, A. Tsao and

T.Turnbull, “Strassen’s algorithm for matrix multiplication: Modeling,

analysis, and implementation,” Technical Report, Center for

Computing Sciences, Bowie, Maryland, 1996.

[14] M. Thottethodi, S. Chatterjee and A. R. Lebeck, “Tuning Strassen's

matrix multiplication for memory efficiency,” Supercomputing '98

Proceedings of the 1998 ACM/IEEE Conference on Supercomputing,

Orlando, Florida, 2012.

[15] (2013) Mathworks. [Online]. Available:

http://www.mathworks.com/company/newsletters/articles/matlab-

incorporates-lapack.hl

