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Abstract— ‘Divide and Conquer’ (D&C) is a famous paradigm 

for designing efficient algorithms and improving the effectiveness 

of computer memory hierarchies. Indeed, D&C-based matrix 

algorithms operate on submatrices or blocks, so that data loaded 

into the faster memory levels are reused. In this paper, we design 

recursive D&C algorithms for solving four  basic linear algebra 

problems, namely matrix multiplication (MM), triangular matrix 

system solving, LU factorization, dense matrix system solving. Our 

solution is based on the use of matrix block decomposition and 

Strassen MM algorithm in the top decomposition level and BLAS 

routines invocation in the bottom decomposition level. The 

theoretical complexity of our algorithms is O(������). In an 

experimental part, we compared our implementations with the 

equivalent kernels in the BLAS library. This latter study achieved 

on different machines permits to evaluate the practical interest of 

our contribution.  

Keywords— BLAS, Block decomposition, Divide and 

Conquer, Linear algebra, Recursive implementation, Strassen 

algorithm.  

I. INTRODUCTION 

The optimization of linear algebra routines has an important 

interest for both sequential and parallel applications. Indeed, 

due to their cubic complexity, the linear algebra routines such 

as matrix multiplication or system solving are too time 

consuming for large sized matrices.  

Since the performance of these routines is memory 

hierarchy dependent, a solution for their optimization consists 

in using the divide and conquer (D&C) paradigm. In fact, with 

this technique, we divide the data into small portions which 

are loaded and reused by fastest levels of memory 

hierarchy.The Strassen method for matrix multiplication [1] is 

a typical divide and conquer algorithm. 

Recursion leads in fact to automatic matrix blocking for 

dense linear algebra algorithms and the recursive way in 

algorithm programming accelerates data access. For this and 

other reasons, recursion usually speeds up the algorithms. Our 

work deals with the development of fast algorithms for 

solving triangular matrix systems, LU factorization and 

solving dense matrix systems. The main idea focuses on how 

recursion can be applied in order to benefit from recursive 

Strassen matrix multiplication algorithm. 

The remainder of our paper is organised as follows.  In 

Section 2, we recall the well-known Strassen algorithm for 

matrix multiplication, introduce our recursive blocked 

algorithms for solving a triangular matrix system then for LU 

factorization and present two algorithms for solving a dense 

matrix system. In Section 3, we discuss different 

implementation issues, including when to terminate the 

recursion (optimal level) and a describe comparative study 

with the BLAS routines. 

II. RECURSIVE LINEAR ALGBRA ALGORITHMS 

A. Matrix Multiplication (MM) 

Let A, B and C be real matrices of size n. The number of 

scalar operations required for computing the matrix product   

C=AB by the standard method is 2n
3
=O(n

3
). Due to its 

regularity and stability, this method is implemented in the 

BLAS library as dgemm routine.  

In [1] Strassen introduced an algorithm for matrix 

multiplication, based on the D&C paradigm, whose 

complexity is only O(n�	
��). This algorithm is based on the 

block decomposition of matrix A, B and C. Hence, to calculate 

the matrix product C =AB of size n, we need 7 matrix 

products and 18 matrix additions of size n/2. Therefore, the 

complexity recurrence formula is as follows:  

 

Str(n) = 7Str(n/2) + 18ADD(n/2) + O(n
2
). Solving this 

recurrence leads to Str(n) = O(
�����
) = O(n

2.807
). Hence an 

algorithm better than the standard one. 

Since the seminal work of Strassen, a series of other works 

tried to design faster algorithms. We may particularly cite the 

Coppersmith-Winograd algorithm whose complexity is 
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O(n
2,376

). However, this latter is significantly more 

complicated and less stable than Strassen’s [2], [3]. 

B. Triangular Matrix System Solving (TMSS) 

We now discuss the design of solvers for a triangular 

matrix system with matrix right hand side AX=B (resp. left 

hand side XA=B) where A (a triangular matrix) and B (a 

dense matrix) are known.  

This kernel is commonly named trsm in the BLAS 

convention. In the following, we will consider, without loss of 

generality, the resolution of a lower triangular matrix system 

with matrix right hand side (AX=B). Our approach is based on 

a block recursive algorithm in order to reduce the computation 

to matrix multiplication (MM) [4], [5].  

To optimize this algorithm, we use a fast algorithm for 

dense MM i.e. Strassen algorithm. 

 

Fig. 1  Matrix Splitting for TMSS Algorithm 

 

We split A, X and B as mentioned in figure 1. This 

recursive splitting is expressed as follows: 

 

(1) A11X11 = B11   (3)  A21X11 + A22X21= B21 

(2) A11X12 = B12 (4)  A21X12 + A22X22= B22 

The procedure is recursively applied until reaching a size 

smaller than a fixed block size blks. Hence, solving a TMSS 

of size n requires 4 TMSS of size n/2 and 2 MM of size n/2. 

Thus, the resulting complexity recurrence formula is: 

 

TMSS(n) = 4TMSS(n/2) + 2MM(n/2) + O(n
2
) 

                = 4TSS(n/2) + O(
�����) = O(
�����). 

       So, we define for TMSS 2 levels (denoted (i,j), see figure 

2) since there are 2 recursions.  

 

Fig. 2  Matrix Splitting for TMSS Algorithm- 2 levels 

 

TMSS Algorithm 

Begin 

   If (n<=blks) Then 

       Trsm(A,X,B,n) 

   Else /* split matrices into four blocks of sizes n/2*/       

  X11 = TMSS(A11,B11)  

  X12 = TMSS(A11,B12) 

 X21 = TMSS(A22, B21-MM(A21,X11)) 

 X22 = TMSS(A22, B22-MM(A21,X12)) 

   Endif 

End 

C. LU Factorization (LUF) 

LU Factorization, called also LU decomposition, factorizes 

a matrix as the product of a lower triangular matrix (L) and an 

upper triangular one (U).  It is generally used to solve 

square systems of linear equations, and is considered as a key 

step for matrix inversion or computing the determinant 

matrix. This kernel is commonly named getrf in the BLAS 

convention. 

 

To reduce the complexity of LUF, blocked algorithms 

have been proposed since 1974 [6]. For a given matrix A of 

size n, the L and U factors verifying A=LU. After splitting A, 

L and U as presented in figure 3, we obtain the following 

equations: 

(1) L1U1= A11                                     (3) L3U1 = A21 

(2) L1U2 = A12 (4) L3U2+ L4U4 = A22 
 

Hence the LUF of matrix A of size n requires:  

� One LUF of size n/2 i.e. (1): L1U1= A11 

giving L1 and U1 

� Solving 2 (lower) triangular matrix systems  

(TSS) i.e. (2): L1U2=A12 giving U2 and (3)
T
: 

U1
T
L3

T
=A21

T
 giving L3 

� One matrix multiplication (MM) i.e. L3U2 

� One LUF of size n/2 i.e. (4): L4U4 = A22 -

L3U2 giving L4 and U4.    

Therefore, the complexity recurrence formula is as follows:  

LUF(n) = 2LUF(n/2) + 2TMSS(n/2) + 1MM (n/2) + O(n
2
) 

             = 2LUF(n/2) + O(
�����)= O(
�����) 
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Fig. 3 Matrix Splitting for LUF Algorithm 

 

LUF Algorithm  

Begin 

     If (n<=blks) Then  

         getrf (A,L,U,n) 

    Else /* split matrices into four blocks of sizes n/2*/

        (L1, [U1, U2]) = LUF ([A11 A12])   
           t

U1
t
L3= A21 

       H = A22 – L3U2 

       (L4, U4) = LUF(H) 

    Endif 

End 

 

D. Dense Matrix System Solving (DMSS) 

1) Brief Survey: Solving a linear system of equations is a 

basic kernel used in many scientific applications. Given its 

cubic complexity in terms of the matrix size, say n, several 

works addressed the design of practical efficient algorithms 

for this problem. Apart the standard Gaussian elimination 

(GE) algorithm, another algorithm namely LU factorization 

(LUF) with same complexity is often used due to its better 

stability. This algorithm is composed of two phases. The first 

consists in factorizing of the input matrix, say A, into a 

product of a lower triangular matrix L and an upper triangular 

one U i.e. A=LU. Afterwards, if Ax=b is the input system, 

where x and b are column vectors of size n and A is a square 

matrix of size n, we have to successively solve, in the second 

phase, two triangular systems i.e. Ly=b and Ux=y. We recall 

that the first phase costs 2n
2
/3+O(n

2
) and the second costs 

2n
2
+O(n). Thus an overall 2n

2
/3+O(n

2
) complexity [7]. 

Now, consider the matrix system (MS): AX=B where A, X 

and B are three dense square matrices of size n, A and B being 

known whereas X is unknown. Clearly, a straightforward 

approach for solving such a matrix system (MS) consists in 

solving n classical systems of size n. Obviously, this standard 

algorithm (SA) has a complexity SA(n)=8n
3
/3+ O(n

2
) since 

we need only one factorization followed by solving n couples 

of triangular systems.  

More precisely, solving the MS: AX=B by LUF requires 

one LUF i.e. A=LU, then solving two triangular matrix 

systems (TSS): LY=C and UX=Y i.e. 2 classical triangular 

systems of size n. Our aim is to optimize (through the D&C 

paradigm) both LUF and TSS kernels in order to obtain a fast 

algorithm for solving the MS. 

2) Recursive Algorithm Using Blocked Decomposition: We 

introduce now another algorithm for solving the MS: AX=B. 

The main idea consists in decomposing both matrices A, X 

and B into 4 submatrices of size n/2 as shown in figure 4. 

 

 
 

Fig. 4 Matrix Splitting for Recursive Blocked Algorithm 

 

     This splitting leads to the following equations: 

(1) X�� � A��X�� � B�� � X�� � A��
���B�� � A��X��� 

(2) A��X�� � A��X�� � B�� � X�� � A��
���B�� � A��X��� 

(3) A��X�� � A��X�� � B�� � A��A��
���B�� � A��X��� �

A��X�� � B�� 

(4) ������ � ������ �  ��  � ������
��� �� � ������� �

������ �  �� 

 

      To ensure that the complexity of the Recursive Blocked 

(RB) algorithm does not exceed that of the standard algorithm 

(SA) i.e. 8n
3
/3 +O(n

2
), we must choose the most suitable 

kernels. We have shown in a previous paper  [8] that we have 

to solve two dense matrix systems and six triangular systems 

of size n/2 along with five dense matrix multiplication of size 

n/2. So we get the following complexity recurrence formula: 

 

RB(n) =  2RB(n/2)+ 6TMSS(n/2)+5MM(n/2) + O(n
2
)                                       

=  2RB(n/2) + O(
�����)  = O(
�����)  

 

      Clearly, if any MM algorithm of O(
�����) complexity is 

used, then the algorithms previously presented both have the 

same O(
�����) complexity instead of O(n
3
) for the 

corresponding standard algorithms. 

 

      To conclude our theoretical study on the four kernels, we 

have to precise that their  O�n�	
��� complexity requires that 

the recursive decomposition procedure (RDC) is repeated until 

reaching elementary problems of size O(1) [9], [10] However, 

this is never the case it practice since the RDC is usually 

stopped at a size equal to n/2
r
 where r < k = log2n leading to 

the best execution time.  

 

The parameter r will hence be considered as the optimal 

level in the RDC. On the other hand, if we define 1 optimal 

level for the MM algorithm, 2 optimal levels will be defined 

for TMSS since there are 2 recursions (1 for TMSS and 1 for 

MM called by TMSS), 4 for LUF since there are 4 recursions 
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(1 for LUF, 1 for MM and 2 for TMSS both called by LUF), 6 

for the DMSS algorithm based on LU factorization (noted 

RDLUF) since there are 6 recursions (1 for RDLUF, 1 for 

MM and 4 LUF both called by RDLUF), and  4 for RB 

algorithm (1 for RB, 2 for TMSS and 1 for MM called by 

RB). 

III. EXPERIMENTAL STUDY 

      This section presents experiments of our implementations 

for the different algorithms described above. We precise that 

we used BLAS library [11] in the last recursion level of any 

algorithm. Four machines (nodes) from the Grid’5000 were 

targeted [12] (see Table 1). We used the g++ compiler under a 

Linux Debian wheezy distribution. All execution times are the 

means of several runs. 

      We have to underline the importance of the determination, 

for each algorithm used, of the optimal number of recursive 

levels (nrl) i.e. the one leading to the best execution time. 

Indeed, the optimal nrl depends on both matrix size and target 

machine architecture and has to be determined experimentally. 

It is well known that the execution tie decreases for increasing 

nrl until a precise threshold, and then increases [13]. 

      We discuss in this section the variations of the execution 

time in terms of the matrix size N. For this purpose, N was 

chosen in the range [1024  16384] and the input matrices 

involving real floating point elements were randomly 

generated. For sake of simplicity and without loss of 

generality, we chosed N as a power of 2. We recall that when 

this is not the case, there are techniques known in the literature 

proposing efficient strategies (e.g. padding, dynamic peeling) 

leading to the power-of-2 case without increasing the 

complexity order [14]. 

TABLE I 

MACHINES’ CHARACTERISTICS 

 CPU RAM size 
Cache 

size 

Node1 AMD Opteron@1.7GHz 47  GB 0.5  Mo 

Node2 Intel Xeon@2.93GHz 23 GB 8   Mo 

Node3 Intel Xeon@2.27GHz 23 GB 8   Mo 

Node4 Intel Xeon@2.53GHz 15 GB 8   Mo 

 

A. Matrix Multiplication 

We compare in this section our recursive implementation 

for matrix multiplication (RIMM) and the BLAS routine 

dgemm for the same operation. We denote by Time and Level 

the minimum execution time (given in seconds) of Strassen 

Algorithm with the then level = ‘Level’. We also give the ratio 

i.e. execution time of dgemm/execution time of RIMM. 

 

TABLE III 

 MM:  RIMM VS DGEMM 

 Node 1 

N dgemm (s) 
RIMM 

Ratio 
Time (s) Level 

1024 2.75 1.51 2 1.82 

2048 22.43 10.68 3 2.10 

4096 178.93 76.64 4 2.33 

8192 1449.63 545.02 5 2.66 

16384 11553.63 3843.05 6 3.00 

 Node 2 

1024 0.96 0.71 3 1.35 

2048 7.82 5.02 4 1.55 

4096 67.4 35.8 5 1.88 

8192 534.66 253.92 6 2.03 

16384 4430.28 1788.54 7 2.47 

 Node 3 

1024 1.16 0.92 3 1.26 

2048 9.62 6.45 4 1.49 

4096 83.45 46.04 5 1.81 

8192 664.81 326.27 6 2.03 

16384 5548.39 2298.19 7 2.41 

 Node 4 

1024 0.93 0.74 3 1.25 

2048 7.76 5.31 4 1.46 

4096 68.67 38.03 5 1.80 

8192 547.67 270.04 6 2.02 

16384 4579.54 1904.74 7 2.40 

  

We can notice that for any target machine and any matrix 

size, RIMM is better than BLAS. The corresponding speed-

ups increase with N. Indeed, for N=16384, RIMM is 3 times 

better than BLAS with node 1 and around 2.4 times better 

with the three other nodes. We have to add that the recursion 

is terminated when the size of remaining subproblems to be 

solved is smaller than the machine block size, which is the 

only architecture-dependent parameter in our algorithms.  

B. Triangular Matrix System Solving 

We compare in this section our recursive implementation 

for triangular matrix system solving (RITSS) and the dtrsm 

BLAS routine resolving the same problem. The two induced 

recursion levels are denoted ‘Level(1,2)’ where the first is that 

of RITSS and the second is that of  RIMM (called by RITSS 

for the resolution of the encountered MM). 
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TABLE IIIII 

TRIANGULAR MATRIX SYSTEM SOLVING: RITSS VS DTRSM 

 Node 1 

N Dtrsm(s) 
RITSS 

Ratio 
Time (s) Level(1.2) 

1024 1.22 0.91 (1,1) 1.34 

2048 12.16 6.8 (2,2) 1.79 

4096 104.06 50.56 (3,3) 2.06 

8192 1202.44 373.71 (4,3) 3.21 

16384 9672.9 2756.7 (4,4) 3.51 

 Node 2 

1024 0.59 0.47 (2,1) 1.25 

2048 5.05 3.34 (4,1) 1.51 

4096 41.59 24.27 (4,2) 1.71 

8192 332.92 174.29 (4,3) 1.91 

16384 2827.28 1252.79 (4,4) 2.26 

 Node 3 

1024 0.75 0.6 (2,1) 1.25 

2048 6.4 4.3 (4,1) 1.49 

4096 52.69 31.27 (4,2) 1.68 

8192 420.77 224.51 (4,3) 1.87 

16384 3591.94 1611.47 (5,4) 2.23 

 Node 4 

1024 0.59 0.49 (2,1) 1.20 

2048 5.06 3.44 (4,1) 1.47 

4096 42.25 25.07 (4,2) 1.68 

8192 337.79 180.57 (4,3) 1.87 

16384 2907.67 1298.52 (4,4) 2.24 

 

We can determinate for any node the level for which RITSS 

becomes better than dtrsm. The corresponding Ratio increases 

with N. Indeed, for N=16384, RITSS is 3.5 times better than   

BLAS with node 1 and around 2.25 times better with the other 

machines. 

C. LU Factorization 

We compare in this section our recursive implementation 

for the LU factorization routine RILUF and the BLAS routine 

for LU factorization dgetrf. We denote the four induced 

recursion levels by ‘Level(1,2,3,4)’ where level 1 is the LUF 

recursion level, level 2 et 3 are those of RITSS (called by 

RILUF)  and level 4 is the recursion level of RIMM (called by 

RILUF). 

 

 

 

TABLE IVV 

RILUF VS DGETRF 

 Node 1 

N dgetrf (s) 
RILUF 

Ratio 
Time (s) Level(1,2,3,4) 

1024 0.63 0.6 (2,0,4,3) 1.05 

2048 4.98 4.16 (3,0,4,3) 1.20 

4096 40.25 31.58 (3,0,4,3) 1.27 

8192 421.41 249.68 (4,3,3,4) 1.69 

16384 5631.42 2202.88 (3,3,3,3) 2.56 

 Node 2 

1024 0.3 0.28 (2,0,3,3) 1.07 

2048 2.26 1.9 (4,0,3,3) 1.19 

4096 19.06 14.23 (3,0,4,3) 1.34 

8192 150.84 108.88 (3,0,4,4) 1.39 

16384 1337.44 808.54 (4,1,4,4) 1.65 

 Node 3 

1024 0.37 0.32 (4,0,0,0) 1.16 

2048 2.87 2.4 (4,0,0,1) 1.20 

4096 24.14 18.19 (3,0,3,3) 1.33 

8192 192.68 138.92 (3,0,4,4) 1.39 

16384 1803.46 1038.77 (4,1,3,4) 1.74 

 Node 4 

1024 0.3 0.25 (4,0,1,0) 1.20 

2048 2.27 1.9 (3,0,1,1) 1.19 

4096 19.07 14.57 (3,0,4,3) 1.31 

8192 152.55 111.3 (4,0,4,3) 1.37 

16384 1338.21 844.33 (4,0,4,4) 1.58 

 

We can determinate for any target machine the level for 

which RILUF becomes better than dgetrf. The corresponding 

ratio increases with N. Indeed, for N=16384, RILUF is 2.5 

times faster than BLAS with node 1 and around 1.7 better with 

the other machines. This shows the importance of determining 

a suitable level.  

 

D. Dense Matrix System Solving 

We named our routine RIDLUF and RIDRB (see section 2.4). 

The BLAS routine, where the routine dtrsm was used in 

combination with the factorization routine dgetrf to solve 

dense systems, is denoted dmss. We precise that we denote by 

‘Ratio1’ (resp.Ratio2) the ratio execution time of 

RIDLUF/dmss (resp. RIDRB/dmss). For RIDLUF, the six 

induced recursion levels are denoted ‘Level(1…6)’, where 
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levels  1…4 correspond to LUF  (which is called by RIDLUF) 

and levels 5,6 correspond to RITSS. 

TABLE V 

SOLVING DENSE MATRIX SYSTEM:  RIDLUF VS DTRSM 

 Node 1 

N dmss (s) 
RIDLUF 

Ratio1 
Time (s) Level(1…6) 

1024 3.15 3.3 (2,0,2,2,3,3) 0.95 

2048 29.44 19.9 (3,0,2,2,3,3) 1.48 

4096 250 135.1 (3,1,3,3,3,3) 1.85 

8192 3063.05 1029.05 (3,0,3,3,4,4) 2.98 

16384 25546.01 7756.44 (4,1,3,4,4,4) 3.29 

 Node 2 

1024 1.45 1.47 (2,0,2,2,3,3) 0.99 

2048 12.37 9.13 (2,0,2,2,3,3) 1.35 

4096 102.48 63.55 (3,0,3,3,3,3) 1.61 

8192 850.81 459.83 (3,1,4,3,4,3) 1.85 

16384 7017.24 3348.38 (4,0,4,4,4,4) 2.10 

 Node 3 

1024 1.47 1.61 (3,0,2,2,3,3) 0.91 

2048 12.5 9.77 (2,0,2,2,3,3) 1.28 

4096 104.41 66.47 (3,0,3,3,3,3) 1.57 

8192 849.34 482.97 (3,0,3,3,3,3) 1.76 

16384 7310.57 3486.21 (3,1,3,3,4,4) 2.10 

 Node 4 

1024 1.88 1.88 (3,0,2,2,3,3) 1.00 

2048 15.77 11.75 (3,0,2,2,3,3) 1.34 

4096 130.65 81.74 (3,0,3,3,3,3) 1.60 

8192 1073.95 600.72 (3,0,3,3,4,4) 1.79 

16384 9009.67 4371.1 (3,1,3,3,4,4) 2.06 

 

      We can determinate for any node the level for which 

RIDLUF becomes better than dmss. The corresponding ratio 

increases with N. Indeed, for N=16384, RIDLUF is 3.29  

times better than BLAS with node 1 and around 2 times better 

with the other nodes. 

      For RIDRB, we denote the four induced recursion levels 

by ‘Level (1…4)’, where level 1 is the recursion levels of 

RIDRB, levels 2 and 3 the recursion levels of RITSS  (which 

is called by RIDRB) and level 4 is the recursion level of 

RIMM. 

We remark that for any target machine, there is a level 

when RIDRB becomes faster than dmss. For a matrix of size 

16384, RIDRB is 3.33 times better than BLAS with node 1 

and around 2.2 times better with the other nodes. Furthermore, 

an important loss of performance is observed for BLAS when 

N increases. 

 

TABLE VI 

SOLVING DENSE MATRIX SYSTEM:  RIDRB VS DMSS 

 Node 1 

N dmss (s) 

RIDRB 

Ratio2 Time (s) Level(1…

4) 

1024 3.18 2.1 (1,2,1,1) 1.51 

2048 29.57 16.09 (1,2,1,1) 1.84 

4096 248.6 127.66 (2,2,2,2) 1.95 

8192 3067.71 957.64 (2,3,3,3) 3.20 

16384 25471.57 7653.75 (3,3,4,4) 3.33 

 Node 2 

1024 1.49 1.03 (1,2,1,1) 1.45 

2048 12.42 7.46 (1,3,1,1) 1.66 

4096 102.77 58.13 (1,3,2,2) 1.77 

8192 850.77 430.7 (2,3,3,3) 1.98 

16384 7150.95 3217.06 (2,4,4,4) 2.22 

 Node 3 

1024 1.48 1.06 (1,2,1,1) 1.40 

2048 12.49 7.68 (1,2,1,1) 1.63 

4096 104.52 59.55 (1,4,1,1) 1.76 

8192 849.05 453.67 (2,2,3,3) 1.87 

16384 7304.99 3278.79 (2,3,4,4) 2.23 

 Node 4 

1024 1.87 1.32 (1,2,1,1) 1.42 

2048 15.76 9.60 (1,3,1,1) 1.64 

4096 130.42 74.67 (1,4,2,2) 1.75 

8192 1072.29 553.33 (1,3,3,3) 1.94 

16384 9013.12 4894.0 (2,2,3,3) 2.19 

 

E. Remarks related to machine architecture  

The experimental study achieved on different nodes 

enables us to make the following remarks as far as the node 

architecture is concerned. 

1) Different behaviors between nodes: Figure 5 and figure 6 

depict the variations of the Ratio in terms of matrix size for 

MM and TMSS. We can notice that the behaviours of the 

three Intel nodes (2, 3 and 4) are quite similar contrary to node 

1. In fact, the designed algorithms are more efficient on this 

latter. 

This phenomenon is due to the decreasing of BLAS 

performance for node 1. In fact, the optimization approach 

adopted by BLAS basically involves the optimal use of cache 

by simultaneously operating on several columns of a matrix.          

On machines with high speed and large cache memory, these 

operations can provide a significant speed advantage [15]. 

Since for the AMD processor (node 1), the cache memory size 

is 0.5 Mo, so the BLAS performance decreases and the ratio is 
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larger than that found for other nodes .i.e. for Intel processors 

having 8Mo of cache size (see figure 7). 

 

 
 

Fig. 5 Ratiovariations in terms of matrix size n – 

 RIMM vs DGEMM 

 
 

Fig. 6 Ratio variations in terms of matrix size n – 

RITSS vs DTRSM 

  

 
 

Fig. 7 Performance variation in terms of matrix size n –  

DGEMM 

2) RIDLUF vs RIDRB: In Figure 8 the execution time ratio of 

RIRB/ RILUF is depicted. We can notice that RIDRB is more 

efficient than RIDLUF. For increasing matrix sizes, the two 

algorithms become very similar (improvement factor 

decreases from 1.57 for N=1024 to 1.01 for N=16384). 

 

 
 

Fig. 8 Ratio variations in terms of matrix size n -       

    RIDLUF vs RIDRB 

IV. CONCLUSION AND FUTURE WORK 

The fast recursive algorithms we designed for both matrix 

multiplication, LU factorization, triangular and dense matrix 

systems solving have been proven enough satisfactory in 

practice and could outperform some BLAS routines. These 

performances were tightly related to the target machines and 

the optimal number of recursion levels. Indeed, this occurs at a 

threshold reached when the remaining sub-problems to be 

solved are smaller than the optimal memory block size of the 

target machine. Pursuing recursion until a lower size would in 

general leads to an important overhead and a drop in the 

overall performance. It has to be noticed that our (recursive) 

algorithms essentially benefit from both (recursive) Strassen 

matrix multiplication algorithm, recursion and the use of 

BLAS routines in the last recursion level. Furthermore, the 

performance was reached, particularly thanks to (i) efficient 

reduction to matrix multiplication where we optimized the 

number of recursive decomposition levels and (ii) reusing 

numerical computing libraries as much as possible. 

The results we obtained lead us to precise some 

attracting perspectives we intend to study in the future. We 

may particularly cite the following points: 

•     Design of specific heuristics for the 

determination of the multiple optimal recursion levels in the 

different discussed implementations.    

•     Generalize our approach to other linear algebra 

kernels such as rectangular matrix system solving and 

multiplication. 
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